THE ACOUSTIC SCIENCE OF

BOSTON’S SYMPHONY HALLS

Science reveals how Boston got it right (which as it turns out is not about the reverberation time.)

by Nicholas Edwards
The acoustician Wallace Clement Sabine described this form as the "ideal modern auditorium" for music. So confident was McKim in his ideas that a large plaster model was built and exhibited to the public. A commentator noted that "the substitution of an amphitheater for the usual galleries appeared to take everybody by storm."

Despite its undoubted acoustical qualities, Boston Music Hall was "badly situated, very difficult to access, had dangerous egress, was ill-ventilated, and a fire-trap." Henry Lee Higginson was aware that his symphony orchestra could not be sustained long-term in Boston Music Hall.

Henry Lee Higginson was a philanthropist banker by profession. To secure a performance space for the orchestra, he bought a controlling interest in Boston Music Hall and the first seasons of Boston Symphony Orchestra concerts had taken place in front of the large pipe organ. After the orchestra's third season the organ was removed and this would have greatly changed the acoustics of the hall, increasing the loudness and reverberance. One writer noted "Now an orchestra in the Music Hall really sounds like an orchestra, and not like a weak apology for one."

This acoustical change while welcomed by the audience would have been challenging for the musicians, reducing their ability to hear one another. A sounding board, derided as "Mr Higginson's Woodshed roof" was installed over the concert platform to improve the acoustics. Although undoubtedly an ugly addition to the hall, the acoustical reflector would have significantly improved the balance of the orchestra, strengthening the sound of the strings much more than it affected the loudness of the brass instruments (as these are more directional). This successful intervention may rightly have given Mr Higginson some confidence in his acoustical judgement.

The acoustical outcome for the new concert hall was "badly situated, very difficult to access, had dangerous egress, was ill-ventilated, and a fire-trap". Henry Lee Higginson was aware that his symphony orchestra could not be sustained long-term in Boston Music Hall.

Henry Lee Higginson was a philanthropist banker by profession. To secure a performance space for the orchestra, he bought a controlling interest in Boston Music Hall and the first seasons of Boston Symphony Orchestra concerts had taken place in front of the large pipe organ. After the orchestra's third season the organ was removed and this would have greatly changed the acoustics of the hall, increasing the loudness and reverberance. One writer noted "Now an orchestra in the Music Hall really sounds like an orchestra, and not like a weak apology for one."

This acoustical change while welcomed by the audience would have been challenging for the musicians, reducing their ability to hear one another. A sounding board, derided as "Mr Higginson's Woodshed roof" was installed over the concert platform to improve the acoustics. Although undoubtedly an ugly addition to the hall, the acoustical reflector would have significantly improved the balance of the orchestra, strengthening the sound of the strings much more than it affected the loudness of the brass instruments (as these are more directional). This successful intervention may rightly have given Mr Higginson some confidence in his acoustical judgement.
Sabine thought this meant that the room height would be increased in proportion. However, this was probably a physicist’s misunderstanding of an architecture directive: an architect would increase the plan dimensions but leave the sectional heights unchanged. Higginson certainly did not intend his new hall to be taller than the existing: He wrote to McKim that “I’ve always thought our hall too high—just so much space to be filled to no purpose.”

If the room height in the expanded version of Leipzig was to be unchanged, the reverberation time would also be unchanged, and there was no acoustical disaster for Sabine to avert.

In modern concert hall design, Reverberation Time is far less important than other objective measures such as the strength of the early lateral sound. If a room is designed for strong early lateral sound, the length of the reverberation time is much less critical. We see concert halls, such as the Meyerson Symphony Centre, Dallas where the strong early lateral sound allows a long reverberation time.

Wallace Clement Sabine (June 13, 1868 – January 10, 1919) was an American physicist who founded the field of architectural acoustics.

Reverberation Time: Is it the Correct Factor?

Higginson brought Wallace Clement Sabine to the project to provide scientific advice on concert hall acoustics. At that time, Sabine was the only person in the world with such scientific knowledge, but his science was limited to that of calculating Reverberation Time. His formula for reverberation time is \(T = 0.16 \times \frac{v}{a} \) —which is about what we find. The science of Reverberation Time, however, tells us nothing about room shape, length, width or balcony heights—all of which have greater influence on the acoustic experience than the reverberation time.

Thus for an RT of 1.8s in a shoebox concert hall, we should expect 11.2m height clear above the audience levels—which is about what we find. Modelling the acoustics of Boston Symphony Hall, looking at sound arriving from both sides of the listener, we see that the width, the height of the side balconies and the rectangular shape ensures it achieves a high level of binaural early lateral sound—in agreement with subjective assessment of this hall’s good acoustics.

Acoustic computer modeling of Boston Symphony Hall shows that the reason the hall is so treasured has to do with how the early lateral sound is received through our binaural hearing.
So if the acoustics of the existing hall are shown objectively to be of high quality, what do we see in McKim and Sabine’s favored “Greek Theatre” design? Does it bear out Sabine’s description as “a most attractive auditorium”?

Unfortunately, our modelling shows that this is far from the case.

We see that Boston Symphony Hall was indeed saved from acoustical disaster -- but not by the acoustician. If McKim and Sabine had built their favored Greek theatre form of concert hall with the “correct” reverberation time the hall would not have been acoustically successful and acousticians would have had to look further to find the true secrets of concert hall acoustics.

The success of Boston Symphony Hall gave the science of Reverberation Time undue prominence in concert hall design and laid the groundwork for the failure of New York’s Philharmonic Hall in 1962. As that hall’s acoustician said “…we, Beranek and Johnson, invited Max Abramovitz [the architect] to attend a concert at Boston Symphony Hall at which I emphasized that this was the sound they should expect in New York if the hall was built according to the specifications.”

The popular myth is that Symphony Hall is a triumph of scientific design, but in reality its success comes from its shape and size, not from its reverberation characteristics.

The person we should celebrate as the acoustical hero of Boston Symphony Hall is one Henry Lee Higginson, the philanthropic banker who set the room shaping directives that created the acoustic character of the hall.

1 ORAL HISTORY INTERVIEW WITH DR. LEO L. BERANEK, Oral History Project; Lincoln Center for the Performing Arts, Inc. INTERVIEWER: SHARON ZANE; LOCATION: CAMBRIDGE, MASSACHUSETTS DATE: 4 OCTOBER 2001, pg 45. Then we, Beranek and Johnson, invited Max Abramovitz and Reginald Allen to attend a concert at Boston Symphony Hall, … at which I emphasized that this was the sound they should expect in New York if the hall was built according to the specifications I just read.